Ectopic beats (EBs) are cellular arrhythmias that can trigger lethal arrhythmias. Simulations using biophysically-detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias, however such analyses can pose a huge computational burden. Here, we develop a simplified approach in which logistic regression models (LRMs) are used to define a mapping between the parameters of complex cell models and the probability of EBs (P(EB)). As an example, in this study, we build an LRM for P(EB) as a function of the initial value of diastolic cytosolic Ca2+ concentration ([Ca2+]iini), the initial state of sarcoplasmic reticulum (SR) Ca2+ load ([Ca2+]SRini), and kinetic parameters of the inward rectifier K+ current (IK1) and ryanodine receptor (RyR). This approach, which we refer to as arrhythmia sensitivity analysis, allows for evaluation of the relationship between these arrhythmic event probabilities and their associated parameters. This LRM is also used to demonstrate how uncertainties in experimentally measured values determine the uncertainty in P(EB). In a study of the role of [Ca2+]SRini uncertainty, we show a special property of the uncertainty in P(EB), where with increasing [Ca2+]SRini uncertainty, P(EB) uncertainty first increases and then decreases. Lastly, we demonstrate that IK1 suppression, at the level that occurs in heart failure myocytes, increases P(EB).
Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty.
阅读:3
作者:Jin Qingchu, Greenstein Joseph L, Winslow Raimond L
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2021 | 起止号: | 2021 Oct 19; 17(10):e1009536 |
| doi: | 10.1371/journal.pcbi.1009536 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
