Evaluating segmentation methods for UAV-Based Spoil Pile Delineation.

阅读:4
作者:Thiruchittampalam Sureka, Banerjee Bikram Pratap, Glenn Nancy F, Raval Simit
Mine waste dumps consist of individual, blob-like spoil piles, each with unique geological and geotechnical attributes that contribute to the overall stability of the dump. Manually characterising these individual spoil piles presents challenges due to issues of accessibility, safety risks, and time consumption. Analysis of remotely acquired images, through object-based classification, offers a promising solution for the effective identification and characterisation of individual spoil piles. However, object-based classification's effectiveness hinges on segmentation, an aspect often overlooked in spoil pile analysis. Therefore, this study aims to identify and compare various segmentation approaches to pave the way for image-based spoil characterisation. A comparative analysis is conducted between traditional segmentation approaches and those rooted in deep learning methodologies. Among the diverse segmentation approaches evaluated, the morphology-based deep learning segmentation approach, Segment Anything Model (SAM), exhibited superior performance compared to other approaches. This outcome underscores the effectiveness of incorporating morphological data and deep learning techniques for accurate and efficient segmentation of spoil pile. The findings of this study provide valuable insights into the optimisation of segmentation strategies, thereby contributing to the application of image-based monitoring of spoil piles and promoting the sustainable and hazard free management of mine dump environments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。