Tissue microarrays (TMA) have become an important tool in high-throughput molecular profiling of tissue samples in the translational research setting. Unfortunately, high-throughput profiling in small biopsy specimens or rare tumor samples (eg, orphan diseases or unusual tumors) is often precluded owing to limited amounts of tissue. To overcome these challenges, we devised a method that allows tissue transfer and construction of TMAs from individual 2- to 5-μm sections for subsequent molecular profiling. We named the technique slide-to-slide (STS) transfer, and it requires a series of chemical exposures (so-called xylene-methacrylate exchange) in combination with rehydrated lifting, microdissection of donor tissues into multiple small tissue fragments (methacrylate-tissue tiles), and subsequent remounting on separate recipient slides (STS array slide). We developed the STS technique by assessing the efficacy and analytical performance using the following key metrics: (a) dropout rate, (b) transfer efficacy, (c) success rates using different antigen-retrieval methods, (d) success rates of immunohistochemical stains, (e) fluorescent in situ hybridization success rates, and (f) DNA and (g) RNA extraction yields from single slides, which all functioned appropriately. The dropout rate ranged from 0.7% to 6.2%; however, we applied the same STS technique successfully to fill these dropouts ("rescue" transfer). Hematoxylin and eosin assessment of donor slides confirmed a transfer efficacy of >93%, depending on the size of the tissue (range, 76%-100%). Fluorescent in situ hybridization success rates and nucleic acid yields were comparable with those of traditional workflows. In this study, we present a quick, reliable, and cost-effective method that offers the key advantages of TMAs and other molecular techniques-even when tissue is sparse. The perspectives of this technology in biomedical sciences and clinical practice are promising, given that it allows laboratories to create more data with less tissue.
Slide-to-Slide Tissue Transfer and Array Assembly From Limited Samples for Comprehensive Molecular Profiling.
阅读:8
作者:Weissinger Stephanie E, Georgantas N Zeke, Thierauf Julia C, Pellerin Rebecca, Gardecki Emma, Kühlinger Stephanie, Ritterhouse Lauren L, Möller Peter, Lennerz Jochen K
| 期刊: | Laboratory Investigation | 影响因子: | 4.200 |
| 时间: | 2023 | 起止号: | 2023 May;103(5):100062 |
| doi: | 10.1016/j.labinv.2023.100062 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
