Dynamic criticality-the balance between order and chaos-is fundamental to genome regulation and cellular transitions. In this study, we investigate the distinct behaviors of gene expression dynamics in MCF-7 breast cancer cells under two stimuli: heregulin (HRG), which promotes cell fate transitions, and epidermal growth factor (EGF), which binds to the same receptor but fails to induce cell-fate changes. We model the system as an open, nonequilibrium thermodynamic system and introduce a convergence-based approach for the robust estimation of information-thermodynamic metrics. Our analysis reveals that the Shannon entropy of the critical point (CP) dynamically synchronizes with the entropy of the rest of the whole expression system (WES), reflecting coordinated transitions between ordered and disordered phases. This phase synchronization is driven by net mutual information scaling with CP entropy dynamics, demonstrating how the CP governs genome-wide coherence. Furthermore, higher-order mutual information emerges as a defining feature of the nonlinear gene expression network, capturing collective effects beyond simple pairwise interactions. By achieving thermodynamic phase synchronization, the CP orchestrates the entire expression system. Under HRG stimulation, the CP becomes active, functioning as a Maxwell's demon with dynamic, rewritable chromatin memory to guide a critical transition in cell fate. In contrast, under EGF stimulation, the CP remains inactive in this strategic role, passively facilitating a non-critical transition. These findings establish a biophysical framework for cell fate determination, paving the way for innovative approaches in cancer research and stem cell therapy.
Genomic-Thermodynamic Phase Synchronization: Maxwell's Demon-like Regulation of Cell Fate Transition.
阅读:6
作者:Tsuchiya Masa, Yoshikawa Kenichi, Giuliani Alessandro
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 20; 26(10):4911 |
| doi: | 10.3390/ijms26104911 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
