Multivariate Statistical Analysis for the Detection of Air Pollution Episodes in Chemical Industry Parks.

阅读:4
作者:Zhao Xiangyu, Cheng Kuang, Zhou Wang, Cao Yi, Yang Shuang-Hua
Air pollution episodes (APEs) caused by excessive emissions from chemical industry parks (CIPs) have resulted in severe environmental damage in recent years. Therefore, it is of great importance to detect APEs timely and effectively using contaminant measurements from the air quality monitoring network (AQMN) in the CIP. Traditionally, APE can be detected by determining whether the contaminant concentration at any ambient monitoring station exceeds the national environmental standard. However, the environmental standards used are unified in various ambient monitoring stations, which ignores the source-receptor relationship in the CIP and challenges the effective detection of excessive emissions in some scenarios. In this paper, an approach based on a multivariate statistical analysis (MSA) method is proposed to detect the APEs caused by excessive emissions from CIPs. Using principal component analysis (PCA), the spatial relationships hidden among the historical environmental monitoring data are extracted, and the high-dimensional data are projected into only two subspaces. Then, two monitoring indices, T2 and Q, which represent the variability in these subspaces, are utilized to monitor the pollution status and detect the potential APEs in the CIP. In addition, the concept of APE detectability is also defined, and the condition for APE detectability is derived, which explains when the APEs can be detectable. A simulated case for a CIP in Zhejiang province of China is studied to evaluate the performance of this approach. The study indicates that the method can have an almost 100% APE detection rate. The real-world measurements of Total Volatile Organic Compounds (TVOC) at a 10-min time interval from 3 December 2020∼12 December 2020 are also analyzed, and 64 APEs caused by excessive TVOC emissions are detected in a total of 1440 time points.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。