Metal Oxide-Metal Organic Framework Layers for Discrimination of Multiple Gases Employing Machine Learning Algorithms.

阅读:3
作者:John Alishba T, Qian Jing, Wang Qi, Garay-Rairan Fabian S, Bandara Y M Nuwan D Y, Lensky Artem, Murugappan Krishnan, Suominen Hanna, Tricoli Antonio
The increasing demand for gas molecule detection emphasizes the need for portable sensor devices possessing selectivity, a low limit of detection (LOD), and a large dynamic range. Despite substantial progress in developing nanostructured sensor materials with heightened sensitivity, achieving sufficient selectivity remains a challenge. Here, we introduce a strategy to enhance the performance of chemiresistive gas sensors by combining an advanced sensor design with machine learning (ML). Our sensor architecture consists of a tungsten oxide (WO(3)) nanoparticle network, as the primary sensing layer, with an integrated zeolitic imidazolate framework (ZIF-8) membrane layer, used to induce a gas-specific delay to the diffusion of analytes, sharing conceptual similarities to gas chromatography. However, the miniaturized design and chemical activity of the ZIF-8 results in a nontrivial impact of the ZIF-8 membrane on the target analyte diffusivity and sensor response. An ML method was developed to evaluate the response dynamics with a panel of relevant analytes including acetone, ethanol, propane, and ethylbenzene. Our advanced sensor design and ML algorithm led to an excellent capability to determine the gas molecule type and its concentration, achieving accuracies of 97.22 and 86.11%, respectively, using a virtual array of 4 sensors. The proposed ML method can also reduce the necessary sensing time to only 5 s while maintaining an accuracy of 70.83%. When compared with other ML methods in the literature, our approach also gave superior performance in terms of sensitivity, specificity, precision, and F1-score. These findings show a promising approach to overcome a longstanding challenge of the highly miniaturized but poorly selective semiconductor sensor technology, with impact ranging from environmental monitoring to explosive detection and health care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。