This paper introduces the enhancement of Visible Light Communications (VLC) for V2V using artificial intelligence models. Different V2V scenarios are simulated. The first scenario considers a specific longitudinal separation and a variable lateral shift between vehicles. The second scenario assumes random longitudinal separation and a specific lateral shift between vehicles. Significant obstacles that impair performance and dependability in V2V communication systems include bit errors, high power consumption, and interference. By combining Convolutional Neural Networks (CNNs), Generative Adversarial Network (GAN), Gated Recurrent Unit (GRU), and Deep Denoising Autoencoder (DDAE), this paper suggests a deep learning-based system to address these issues. The framework comprises four modules, a power reduction module that uses a GAN to generate low-power signals while maintaining signal quality; a performance enhancement module that uses GRU, a Bit Error Rate (BER) reduction module that uses a DDAE to denoise the received signal and minimize errors; and an interference cancellation module that uses a CNN-based U-Net to separate the desired signal from interference. It is shown that the suggested model significantly improves throughput, power efficiency, BER reduction, and interference cancellation. In dynamic and noisy contexts, our study offers a reliable and scalable way to improve the performance and dependability of V2V communication systems. The CNN-U-Net-GAN-GRU-DDAE model outperforms other models, including CNN-U-Net, CNN-U-Net-GAN, and CNN-U-Net-GAN-GRU, achieving the best results by an average percentage 13.6%, 14.4% and 4.2% respectively. By comparing this work with previous works, we deduce that the improving average percentage for our work by 31.7%.
CNN-LSTM-AM approach for outdoor wireless optical communication systems.
阅读:3
作者:Abdelsattar Montaser, Amer Eman S, Ziedan Hamdy A, Salama Wessam M
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Sep 1; 15(1):32178 |
| doi: | 10.1038/s41598-025-16828-2 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
