Superionic Ionic Conductor Discovery via Multiscale Topological Learning.

阅读:5
作者:Chen Dong, Wang Bingxu, Li Shunning, Zhang Wentao, Yang Kai, Song Yongli, Wei Guo-Wei, Pan Feng
Lithium superionic conductors (LSICs) are crucial for next-generation solid-state batteries, offering exceptional ionic conductivity and enhanced safety for renewable energy and electric vehicles. However, their discovery is extremely challenging due to the vast chemical space, limited labeled data, and the understanding of complex structure-function relationships required for optimizing ion transport. This study introduces a multiscale topological learning (MTL) framework, integrating algebraic topology and unsupervised learning to tackle these challenges efficiently. By modeling lithium-only and lithium-free substructures, the framework extracts multiscale topological features and introduces two topological screening metrics-cycle density and minimum connectivity distance-to ensure structural connectivity and ion diffusion compatibility. Promising candidates are clustered via unsupervised algorithms to identify those resembling known superionic conductors. For final refinement, candidates that pass chemical screening undergo ab initio molecular dynamics simulations for validation. This approach led to the discovery of 14 novel LSICs, four of which have been independently validated in recent experiments. This success accelerates the identification of LSICs and demonstrates broad adaptability, offering a scalable tool for addressing complex materials discovery challenges.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。