High-throughput omics data often contain systematic biases introduced during various steps of sample processing and data generation. As the source of these biases is usually unknown, it is difficult to select an optimal normalization method for a given data set. To facilitate this process, we introduce the open-source tool "Normalyzer". It normalizes the data with 12 different normalization methods and generates a report with several quantitative and qualitative plots for comparative evaluation of different methods. The usefulness of Normalyzer is demonstrated with three different case studies from quantitative proteomics and transcriptomics. The results from these case studies show that the choice of normalization method strongly influences the outcome of downstream quantitative comparisons. Normalyzer is an R package and can be used locally or through the online implementation at http://quantitativeproteomics.org/normalyzer .
Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets.
阅读:4
作者:Chawade Aakash, Alexandersson Erik, Levander Fredrik
| 期刊: | Journal of Proteome Research | 影响因子: | 3.600 |
| 时间: | 2014 | 起止号: | 2014 Jun 6; 13(6):3114-20 |
| doi: | 10.1021/pr401264n | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
