This study investigates Intraobserver Features Variability (IFV) in radiomics studies and assesses the effectiveness of the ComBat harmonization method in mitigating these effects. Methods: This study utilizes data from the NSCLC-Radiomics-Interobserver1 dataset, comprising CT scans of 22 Non-Small Cell Lung Cancer (NSCLC) patients, with multiple Gross Tumor Volume (GTV) delineations performed by five radiation oncologists. Segmentation was completed manually ("vis") or by autosegmentation with manual editing ("auto"). A total of 1229 radiomic features were extracted from each GTV, segmentation method, and oncologist. Features extracted included first order, shape, GLCM, GLRLM, GLSZM, and GLDM from original, wavelet-filtered, and LoG-filtered images. Results: Before implementing ComBat harmonization, 83% of features exhibited p-values below 0.05 in the "vis" approach; this percentage decreased to 34% post-harmonization. Similarly, for the "auto" approach, 75% of features demonstrated statistical significance prior to ComBat, but this figure declined to 33% after its application. Among a subset of three expert radiation oncologists, percentages changed from 77% to 25% for "vis" contouring and from 64% to 23% for "auto" contouring. This study demonstrates that ComBat harmonization could effectively reduce IFV, enhancing the feasibility of multicenter radiomics studies. It also highlights the significant impact of physician experience on radiomics analysis outcomes.
Mitigating Interobserver Variability in Radiomics with ComBat: A Feasibility Study.
阅读:4
作者:D'Anna Alessia, Stella Giuseppe, Gueli Anna Maria, Marino Carmelo, Pulvirenti Alfredo
| 期刊: | Journal of Imaging | 影响因子: | 3.300 |
| 时间: | 2024 | 起止号: | 2024 Oct 24; 10(11):270 |
| doi: | 10.3390/jimaging10110270 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
