Proteomic Diversity in Bacteria: Insights and Implications for Bacterial Identification.

阅读:5
作者:Abele Miriam, Soleymaniniya Armin, Bayer Florian P, Lomp Nina, Doll Etienne, Meng Chen, Neuhaus Klaus, Scherer Siegfried, Wenning Mareike, Wantia Nina, Kuster Bernhard, Wilhelm Mathias, Ludwig Christina
Mass spectrometry-based proteomics has revolutionized bacterial identification and elucidated many molecular mechanisms underlying bacterial growth, community formation, and drug resistance. However, most research has been focused on a few model bacteria, overlooking bacterial diversity. In this study, we present the most extensive bacterial proteomic resource to date, covering 303 species, 119 genera, and five phyla with over 636,000 unique expressed proteins, confirming the existence of over 38,700 hypothetical proteins. Accessible via the public resource ProteomicsDB, this dataset enables quantitative exploration of proteins within and across species. Additionally, we developed MS2Bac, a bacterial identification algorithm that queries NCBI's bacterial proteome space in two iterations. MS2Bac achieved over 99% species-level and 89% strain-level accuracy, surpassing methods like MALDI-TOF and FTIR, as demonstrated with food-derived bacterial isolates. MS2Bac also effectively identified bacteria in clinical samples, highlighting the potential of MS-based proteomics as a routine diagnostic tool.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。