Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma.

阅读:4
作者:Lu Jiameng, Ji Xiaoqing, Wang Lixia, Jiang Yunxiu, Liu Xinyi, Ma Zhenshen, Ning Yafei, Dong Jie, Peng Haiying, Sun Fei, Guo Zihan, Ji Yanbo, Xing Jianping, Lu Yue, Lu Degan
Identifying an epidermal growth factor receptor (EGFR) mutation is important because EGFR tyrosine kinase inhibitors are the first-line treatment of choice for patients with EGFR mutation-positive lung adenocarcinomas (LUAC). This study is aimed at developing and validating a radiomics-based machine learning (ML) approach to identify EGFR mutations in patients with LUAC. We retrospectively collected data from 201 patients with positive EGFR mutation LUAC (140 in the training cohort and 61 in the validation cohort). We extracted 1316 radiomics features from preprocessed CT images and selected 14 radiomics features and 1 clinical feature which were most relevant to mutations through filter method. Subsequently, we built models using 7 ML approaches and established the receiver operating characteristic (ROC) curve to assess the discriminating performance of these models. In terms of predicting EGFR mutation, the model derived from radiomics features and combined models (radiomics features and relevant clinical factors) had an AUC of 0.79 (95% confidence interval (CI): 0.77-0.82), 0.86 (0.87-0.88), respectively. Our study offers a radiomics-based ML model using filter methods to detect the EGFR mutation in patients with LUAC. This convenient and low-cost method may be of help to noninvasively identify patients before obtaining tumor sample for molecule testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。