One of the most exciting applications of artificial intelligence is automated scientific discovery based on previously amassed data, coupled with restrictions provided by known physical principles, including symmetries and conservation laws. Such automated hypothesis creation and verification can assist scientists in studying complex phenomena, where traditional physical intuition may fail. Here we develop a platform based on a generalized Onsager principle to learn macroscopic dynamical descriptions of arbitrary stochastic dissipative systems directly from observations of their microscopic trajectories. Our method simultaneously constructs reduced thermodynamic coordinates and interprets the dynamics on these coordinates. We demonstrate its effectiveness by studying theoretically and validating experimentally the stretching of long polymer chains in an externally applied field. Specifically, we learn three interpretable thermodynamic coordinates and build a dynamical landscape of polymer stretching, including the identification of stable and transition states and the control of the stretching rate. Our general methodology can be used to address a wide range of scientific and technological applications.
Constructing custom thermodynamics using deep learning.
阅读:5
作者:Chen Xiaoli, Soh Beatrice W, Ooi Zi-En, Vissol-Gaudin Eleonore, Yu Haijun, Novoselov Kostya S, Hippalgaonkar Kedar, Li Qianxiao
| 期刊: | Nature Computational Science | 影响因子: | 18.300 |
| 时间: | 2024 | 起止号: | 2024 Jan;4(1):66-85 |
| doi: | 10.1038/s43588-023-00581-5 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
