Interferometric SAR (InSAR) techniques allow the detection of ground displacements along the satellite line-of-sight (LOS) directions. Moreover, InSAR can discriminate the ground deformations along the Up-Down and East-West by combining information gathered through ascending and descending paths. Conversely, the LOS-projected ground displacements remain less sensitive to the North-South components because almost all modern satellites fly along near-polar orbits. Our research aims to circumvent this limitation by developing a new method for reconstructing the 3-D ground displacement field in volcanic regions based on potential field theory and using InSAR measurements. We present the theoretical argumentations related to the developed method, demonstrating its efficacy through synthetic tests reconstructing the 3-D ground displacement field in elastic conditions. Then, we provide a 3-D ground displacement time series of the pre-eruptive displacement patterns related to the 2018 eruption at Sierra Negra volcano (Galapagos Archipelago, Ecuador). Our analysis revealed a maximum North-South displacement rate that increased from 40Â cm/yr in the early pre-eruptive stage to 70Â cm/yr before the eruption. The reliability of our results has been tested through comparison with Global Navigation Satellite System measurements. Our approach is innovative and represents a helpful tool for the investigation and modelling of volcanic sources.
Inferring 3D displacement time series through InSAR measurements and potential field theory in volcanic areas.
阅读:5
作者:Barone Andrea, Fedi Maurizio, Pepe Antonio, Mastro Pietro, Tizzani Pietro, Castaldo Raffaele
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 8; 15(1):4719 |
| doi: | 10.1038/s41598-025-88006-3 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
