Interferometric SAR (InSAR) techniques allow the detection of ground displacements along the satellite line-of-sight (LOS) directions. Moreover, InSAR can discriminate the ground deformations along the Up-Down and East-West by combining information gathered through ascending and descending paths. Conversely, the LOS-projected ground displacements remain less sensitive to the North-South components because almost all modern satellites fly along near-polar orbits. Our research aims to circumvent this limitation by developing a new method for reconstructing the 3-D ground displacement field in volcanic regions based on potential field theory and using InSAR measurements. We present the theoretical argumentations related to the developed method, demonstrating its efficacy through synthetic tests reconstructing the 3-D ground displacement field in elastic conditions. Then, we provide a 3-D ground displacement time series of the pre-eruptive displacement patterns related to the 2018 eruption at Sierra Negra volcano (Galapagos Archipelago, Ecuador). Our analysis revealed a maximum North-South displacement rate that increased from 40Â cm/yr in the early pre-eruptive stage to 70Â cm/yr before the eruption. The reliability of our results has been tested through comparison with Global Navigation Satellite System measurements. Our approach is innovative and represents a helpful tool for the investigation and modelling of volcanic sources.
Inferring 3D displacement time series through InSAR measurements and potential field theory in volcanic areas.
阅读:8
作者:Barone Andrea, Fedi Maurizio, Pepe Antonio, Mastro Pietro, Tizzani Pietro, Castaldo Raffaele
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 8; 15(1):4719 |
| doi: | 10.1038/s41598-025-88006-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
