Exploring structure-function relationships in engineered receptor performance using computational structure prediction.

阅读:5
作者:Corcoran William K, Cosio Amparo, Edelstein Hailey I, Leonard Joshua N
Engineered receptors play increasingly important roles in transformative cell-based therapies. However, the structural mechanisms that drive differences in performance across receptor designs are often poorly understood. Recent advances in protein structural prediction tools have enabled the modeling of virtually any user-defined protein, but how these tools might build understanding of engineered receptors has yet to be fully explored. In this study, we employed structural modeling tools to perform post hoc analyses to investigate whether predicted structural features might explain observed functional variation. We selected a recently reported library of receptors derived from natural cytokine receptors as a case study, generated structural models, and from these predictions quantified a set of structural features that plausibly impact receptor performance. Encouragingly, for a subset of receptors, structural features explained considerable variation in performance, and trends were largely conserved across structurally diverse receptor sets. This work indicates potential for structure prediction-guided synthetic receptor engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。