SimFFPE and FilterFFPE: improving structural variant calling in FFPE samples.

阅读:4
作者:Wei Lanying, Dugas Martin, Sandmann Sarah
BACKGROUND: Artifact chimeric reads are enriched in next-generation sequencing data generated from formalin-fixed paraffin-embedded (FFPE) samples. Previous work indicated that these reads are characterized by erroneous split-read support that is interpreted as evidence of structural variants. Thus, a large number of false-positive structural variants are detected. To our knowledge, no tool is currently available to specifically call or filter structural variants in FFPE samples. To overcome this gap, we developed 2 R packages: SimFFPE and FilterFFPE. RESULTS: SimFFPE is a read simulator, specifically designed for next-generation sequencing data from FFPE samples. A mixture of characteristic artifact chimeric reads, as well as normal reads, is generated. FilterFFPE is a filtration algorithm, removing artifact chimeric reads from sequencing data while keeping real chimeric reads. To evaluate the performance of FilterFFPE, we performed structural variant calling with 3 common tools (Delly, Lumpy, and Manta) with and without prior filtration with FilterFFPE. After applying FilterFFPE, the mean positive predictive value improved from 0.27 to 0.48 in simulated samples and from 0.11 to 0.27 in real samples, while sensitivity remained basically unchanged or even slightly increased. CONCLUSIONS: FilterFFPE improves the performance of SV calling in FFPE samples. It was validated by analysis of simulated and real data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。