An automatic end-to-end chemical synthesis development platform powered by large language models.

阅读:7
作者:Ruan Yixiang, Lu Chenyin, Xu Ning, He Yuchen, Chen Yixin, Zhang Jian, Xuan Jun, Pan Jianzhang, Fang Qun, Gao Hanyu, Shen Xiaodong, Ye Ning, Zhang Qiang, Mo Yiming
The rapid emergence of large language model (LLM) technology presents promising opportunities to facilitate the development of synthetic reactions. In this work, we leveraged the power of GPT-4 to build an LLM-based reaction development framework (LLM-RDF) to handle fundamental tasks involved throughout the chemical synthesis development. LLM-RDF comprises six specialized LLM-based agents, including Literature Scouter, Experiment Designer, Hardware Executor, Spectrum Analyzer, Separation Instructor, and Result Interpreter, which are pre-prompted to accomplish the designated tasks. A web application with LLM-RDF as the backend was built to allow chemist users to interact with automated experimental platforms and analyze results via natural language, thus, eliminating the need for coding skills and ensuring accessibility for all chemists. We demonstrated the capabilities of LLM-RDF in guiding the end-to-end synthesis development process for the copper/TEMPO catalyzed aerobic alcohol oxidation to aldehyde reaction, including literature search and information extraction, substrate scope and condition screening, reaction kinetics study, reaction condition optimization, reaction scale-up and product purification. Furthermore, LLM-RDF's broader applicability and versability was validated on various synthesis tasks of three distinct reactions (S(N)Ar reaction, photoredox C-C cross-coupling reaction, and heterogeneous photoelectrochemical reaction).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。