Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.
Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity.
阅读:4
作者:Sun Yuliangzi, Shim Woo Jun, Shen Sophie, Sinniah Enakshi, Pham Duy, Su Zezhuo, Mizikovsky Dalia, White Melanie D, Ho Joshua W K, Nguyen Quan, Bodén Mikael, Palpant Nathan J
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2023 | 起止号: | 2023 Jun 23; 51(11):e62 |
| doi: | 10.1093/nar/gkad307 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
