Low-field magnetic resonance imaging (MRI) has recently been integrated with radiation therapy systems to provide image guidance for daily cancer radiation treatments. The main benefit of the low-field strength is minimal electron return effects. The main disadvantage of low-field strength is increased image noise compared to diagnostic MRIs conducted at 1.5Â T or higher. The increased image noise affects both the discernibility of soft tissues and the accuracy of further image processing tasks for both clinical and research applications, such as tumor tracking, feature analysis, image segmentation, and image registration. An innovative method, adaptive anatomical preservation optimal denoising (AAPOD), was developed for optimal image denoising, i.e., to maximally reduce noise while preserving the tissue boundaries. AAPOD employs a series of adaptive nonlocal mean (ANLM) denoising trials with increasing denoising filter strength (i.e., the block similarity filtering parameter in the ANLM algorithm), and then detects the tissue boundary losses on the differences of sequentially denoised images using a zero-crossing edge detection method. The optimal denoising filter strength per voxel is determined by identifying the denoising filter strength value at which boundary losses start to appear around the voxel. The final denoising result is generated by applying the ANLM denoising method with the optimal per-voxel denoising filter strengths. The experimental results demonstrated that AAPOD was capable of reducing noise adaptively and optimally while avoiding tissue boundary losses. AAPOD is useful for improving the quality of MRIs with low-contrast-to-noise ratios and could be applied to other medical imaging modalities, e.g., computed tomography.
Adaptive anatomical preservation optimal denoising for radiation therapy daily MRI.
阅读:3
作者:Maitree Rapeepan, Perez-Carrillo Gloria J Guzman, Shimony Joshua S, Gach H Michael, Chundury Anupama, Roach Michael, Li H Harold, Yang Deshan
| 期刊: | Journal of Medical Imaging | 影响因子: | 1.700 |
| 时间: | 2017 | 起止号: | 2017 Jul;4(3):034004 |
| doi: | 10.1117/1.JMI.4.3.034004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
