Pediatric dental image analysis faces critical challenges in disease detection due to missing or corrupted pixel regions and the unique developmental characteristics of deciduous teeth, with current Latent Diffusion Models (LDMs) failing to preserve anatomical integrity during reconstruction of pediatric oral structures. We developed two novel biologically-inspired loss functions integrated within LDMs specifically designed for pediatric dental imaging: Gum-Adaptive Pixel Imputation (GAPI) utilizing adaptive 8-connected pixel neighborhoods that mimic pediatric gum tissue adaptive behavior, and Deciduous Transition-Based Reconstruction (DTBR) incorporating developmental stage awareness based on primary teeth transition patterns observed in children aged 2-12 years. These algorithms guide the diffusion process toward developmentally appropriate reconstructions through specialized loss functions that preserve structural continuity of deciduous dentition and age-specific anatomical features crucial for accurate pediatric diagnosis. Experimental validation on 2,255 pediatric dental images across six conditions (caries, calculus, gingivitis, tooth discoloration, ulcers, and hypodontia) demonstrated superior image generation performance with Inception Score of 9.87, Fréchet Inception Distance of 4.21, Structural Similarity Index of 0.952, and Peak Signal-to-Noise Ratio of 34.76, significantly outperforming eleven competing diffusion models. Pediatric disease detection using enhanced datasets achieved statistically significant improvements across five detection models: +0.0694 in mean Average Precision [95% CI: 0.0608-0.0780], +â0.0606 in Precision [0.0523-0.0689], +â0.0736 in Recall [0.0651-0.0821], and +â0.0678 in F1-Score [0.0597-0.0759] (all pâ<â0.0001), enabling pediatric dentists to detect early-stage caries, developmental anomalies, and eruption disorders with unprecedented accuracy. This framework revolutionizes pediatric dental diagnosis by providing pediatric dentists with AI-enhanced imaging tools that account for the unique biological characteristics of developing dentition, significantly improving early detection of oral diseases in children and establishing a foundation for age-specific dental AI applications that enhance clinical decision-making in pediatric dental practice.
DentoMorph-LDMs: diffusion models based on novel adaptive 8-connected gum tissue and deciduous teeth loss for dental image augmentation.
阅读:4
作者:Marie Hanaa Salem, Elbaz Mostafa, Soliman Riham Sobhy, Elkhatib Amira Abdelhafeez
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 26; 15(1):27268 |
| doi: | 10.1038/s41598-025-11955-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
