Recent advances in single-cell genomics and transcriptomics technologies have transformed our understanding of cellular heterogeneity in growth, development, ageing, and disease; however, methods for single-cell lipidomics have comparatively lagged behind in development. We have developed a method for the detection and quantification of a wide range of phosphatidylcholine and sphingomyelin species from single cells that combines fluorescence-assisted cell sorting with automated chip-based nanoESI and shotgun lipidomics. We show herein that our method is capable of quantifying more than 50 different phosphatidylcholine and sphingomyelin species from single cells and can easily distinguish between cells of different lineages or cells treated with exogenous fatty acids. Moreover, our method can detect more subtle differences in the lipidome between cell lines of the same cancer type. Our approach can be run in parallel with other single-cell technologies to deliver near-complete, high-throughput multi-omics data on cells with a similar phenotype and has the capacity to significantly advance our current knowledge on cellular heterogeneity.
FACS-assisted single-cell lipidome analysis of phosphatidylcholines and sphingomyelins in cells of different lineages.
阅读:14
作者:Hancock Sarah E, Ding Eileen, Johansson Beves Emma, Mitchell Todd, Turner Nigel
| 期刊: | Journal of Lipid Research | 影响因子: | 4.100 |
| 时间: | 2023 | 起止号: | 2023 Mar;64(3):100341 |
| doi: | 10.1016/j.jlr.2023.100341 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
