Adaptive RAG-Assisted MRI Platform (ARAMP) for Brain Metastasis Detection and Reporting: A Retrospective Evaluation Using Post-Contrast T1-Weighted Imaging.

阅读:7
作者:Wu Kuo-Chen, Chew Fatt Yang, Cheng Kang-Lun, Shen Wu-Chung, Yeh Pei-Chun, Kao Chia-Hung, Guo Wan-Yuo, Chang Shih-Sheng
This study aimed to develop and evaluate an AI-driven platform, the Adaptive RAG Assistant MRI Platform (ARAMP), for assisting in the diagnosis and reporting of brain metastases using post-contrast axial T1-weighted (AX_T1+C) MRI. In this retrospective study, 2447 cancer patients who underwent MRI between 2010 and 2022 were screened. A subset of 100 randomized patients with confirmed brain metastases and 100 matched non-cancer controls were selected for evaluation. ARAMP integrates quantitative radiomic feature extraction with an adaptive Retrieval-Augmented Generation (RAG) framework based on a large language model (LLM, GPT-4o), incorporating five authoritative medical references. Three board-certified neuroradiologists and an independent LLM (Gemini 2.0 Pro) assessed ARAMP performance. Metrics of the assessment included Pre-/Post-Trained Inference Difference, Inter-Inference Agreement, and Sensitivity. Post-training, ARAMP achieved a mean Inference Similarity score of 67.45%. Inter-Inference Agreement among radiologists averaged 30.20% (p = 0.01). Sensitivity for brain metastasis detection improved from 0.84 (pre-training) to 0.98 (post-training). ARAMP also showed improved reliability in identifying brain metastases as the primary diagnosis post-RAG integration. This adaptive RAG-based framework may improve diagnostic efficiency and standardization in radiological workflows.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。