Adaptive RAG-Assisted MRI Platform (ARAMP) for Brain Metastasis Detection and Reporting: A Retrospective Evaluation Using Post-Contrast T1-Weighted Imaging.

阅读:18
作者:Wu Kuo-Chen, Chew Fatt Yang, Cheng Kang-Lun, Shen Wu-Chung, Yeh Pei-Chun, Kao Chia-Hung, Guo Wan-Yuo, Chang Shih-Sheng
This study aimed to develop and evaluate an AI-driven platform, the Adaptive RAG Assistant MRI Platform (ARAMP), for assisting in the diagnosis and reporting of brain metastases using post-contrast axial T1-weighted (AX_T1+C) MRI. In this retrospective study, 2447 cancer patients who underwent MRI between 2010 and 2022 were screened. A subset of 100 randomized patients with confirmed brain metastases and 100 matched non-cancer controls were selected for evaluation. ARAMP integrates quantitative radiomic feature extraction with an adaptive Retrieval-Augmented Generation (RAG) framework based on a large language model (LLM, GPT-4o), incorporating five authoritative medical references. Three board-certified neuroradiologists and an independent LLM (Gemini 2.0 Pro) assessed ARAMP performance. Metrics of the assessment included Pre-/Post-Trained Inference Difference, Inter-Inference Agreement, and Sensitivity. Post-training, ARAMP achieved a mean Inference Similarity score of 67.45%. Inter-Inference Agreement among radiologists averaged 30.20% (p = 0.01). Sensitivity for brain metastasis detection improved from 0.84 (pre-training) to 0.98 (post-training). ARAMP also showed improved reliability in identifying brain metastases as the primary diagnosis post-RAG integration. This adaptive RAG-based framework may improve diagnostic efficiency and standardization in radiological workflows.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。