Multiresolution cascaded attention U-Net for localization and segmentation of optic disc and fovea in fundus images.

阅读:7
作者:Shalini R, Gopi Varun P
Identification of retinal diseases in automated screening methods, such as those used in clinical settings or computer-aided diagnosis, usually depends on the localization and segmentation of the Optic Disc (OD) and fovea. However, this task is difficult since these anatomical features have irregular spatial, texture, and shape characteristics, limited sample sizes, and domain shifts due to different data distributions across datasets. This study proposes a novel Multiresolution Cascaded Attention U-Net (MCAU-Net) model that addresses these problems by optimally balancing receptive field size and computational efficiency. The MCAU-Net utilizes two skip connections to accurately localize and segment the OD and fovea in fundus images. We incorporated a Multiresolution Wavelet Pooling Module (MWPM) into the CNN at each stage of U-Net input to compensate for spatial information loss. Additionally, we integrated a cascaded connection of the spatial and channel attentions as a skip connection in MCAU-Net to concentrate precisely on the target object and improve model convergence for segmenting and localizing OD and fovea centers. The proposed model has a low parameter count of 0.8 million, improving computational efficiency and reducing the risk of overfitting. For OD segmentation, the MCAU-Net achieves high IoU values of 0.9771, 0.945, and 0.946 for the DRISHTI-GS, DRIONS-DB, and IDRiD datasets, respectively, outperforming previous results for all three datasets. For the IDRiD dataset, the MCAU-Net locates the OD center with an Euclidean Distance (ED) of 16.90 pixels and the fovea center with an ED of 33.45 pixels, demonstrating its effectiveness in overcoming the common limitations of state-of-the-art methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。