Optical Tracking and Digital Quantification of Beating Behavior in Bioengineered Human Cardiac Organoids.

阅读:5
作者:Devarasetty Mahesh, Forsythe Steven, Shupe Thomas D, Soker Shay, Bishop Colin E, Atala Anthony, Skardal Aleksander
Organoid and organ-on-a-chip technologies are rapidly advancing towards deployment for drug and toxicology screening applications. Liver and cardiac toxicities account for the majority of drug candidate failures in human trials. Liver toxicity generally produces liver cell death, while cardiac toxicity causes adverse changes in heart beat kinetics. In traditional 2D cultures, beating kinetics can be measured by electrode arrays, but in some 3D constructs, quantifying beating kinetics can be more challenging. For example, real time measurements of calcium flux or contractile forces are possible, yet rather complex. In this communication article, we demonstrate a simple sensing system based on software code that optically analyzes video capture files of beating cardiac organoids, translates these files in representations of moving pixels, and quantifies pixel movement activity over time to generate beat kinetic plots. We demonstrate this system using bioengineered cardiac organoids under baseline and drug conditions. This technology offers a non-invasive, low-cost, and incredibly simple method for tracking and quantifying beating behavior in cardiac organoids and organ-on-a-chip systems for drug and toxicology screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。