A Deep Learning Radiomics Model to Identify Poor Outcome in COVID-19 Patients With Underlying Health Conditions: A Multicenter Study.

阅读:4
作者:Wang Siwen, Dong Di, Li Liang, Li Hailin, Bai Yan, Hu Yahua, Huang Yuanyi, Yu Xiangrong, Liu Sibin, Qiu Xiaoming, Lu Ligong, Wang Meiyun, Zha Yunfei, Tian Jie
OBJECTIVE: Coronavirus disease 2019 (COVID-19) has caused considerable morbidity and mortality, especially in patients with underlying health conditions. A precise prognostic tool to identify poor outcomes among such cases is desperately needed. METHODS: Total 400 COVID-19 patients with underlying health conditions were retrospectively recruited from 4 centers, including 54 dead cases (labeled as poor outcomes) and 346 patients discharged or hospitalized for at least 7 days since initial CT scan. Patients were allocated to a training set (n = 271), a test set (n = 68), and an external test set (n = 61). We proposed an initial CT-derived hybrid model by combining a 3D-ResNet10 based deep learning model and a quantitative 3D radiomics model to predict the probability of COVID-19 patients reaching poor outcome. The model performance was assessed by area under the receiver operating characteristic curve (AUC), survival analysis, and subgroup analysis. RESULTS: The hybrid model achieved AUCs of 0.876 (95% confidence interval: 0.752-0.999) and 0.864 (0.766-0.962) in test and external test sets, outperforming other models. The survival analysis verified the hybrid model as a significant risk factor for mortality (hazard ratio, 2.049 [1.462-2.871], P < 0.001) that could well stratify patients into high-risk and low-risk of reaching poor outcomes (P < 0.001). CONCLUSION: The hybrid model that combined deep learning and radiomics could accurately identify poor outcomes in COVID-19 patients with underlying health conditions from initial CT scans. The great risk stratification ability could help alert risk of death and allow for timely surveillance plans.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。