The quality of healthcare services is influenced by a multitude of unpredictable events. Changes in patient clinical conditions and challenges in service organization are only some of the vivid examples that can make the management in healthcare difficult. Estimating patient journeys, known as clinical pathways (CPs), can support care providers in resource planning and enhancing service efficiency. This study presents a decision support system to assist clinicians in predicting CPs and outcomes for patients with traumatic brain injuries (TBIs). This machine learning framework employs an optimal decision tree next to a Markov-based trace clustering as predictive model components. A Shapely value approach extract knowledge of features contribution at both individual and population levels. The proposed approach is validated through a real-life event data, demonstrating high accuracy and providing insights into the rationale behind specific CP predictions which facilitate the adoption of machine learning models in clinical settings.
Predicting clinical pathways of traumatic brain injuries (TBIs) through process mining.
阅读:13
作者:Eili Mansoureh Yari, Rezaeenour Jalal, Roozbahani Mohammad Hossein
| 期刊: | npj Digital Medicine | 影响因子: | 15.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 8(1):112 |
| doi: | 10.1038/s41746-025-01484-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
