DendroTweaks: An interactive approach for unraveling dendritic dynamics.

阅读:2
作者:Makarov Roman, Chavlis Spyridon, Poirazi Panayiota
Neurons rely on the interplay between dendritic morphology and ion channels to transform synaptic inputs into a sequence of somatic spikes. Detailed biophysical models with active dendrites have been instrumental in exploring this interaction. However, such models can be challenging to understand and validate due to the large number of parameters involved. In this work, we introduce DendroTweaks - a toolbox designed to illuminate how morpho-electric properties map to dendritic events and how these dendritic events shape neuronal output. DendroTweaks features a web-based graphical interface, where users can explore single-cell neuronal models and adjust their morphological and biophysical parameters with real-time visual feedback. In particular, DendroTweaks is tailored to interactive fine-tuning of subcellular properties, such as kinetics and distributions of ion channels, as well as the dynamics and allocation of synaptic inputs. It offers an automated approach for standardization and refinement of voltage-gated ion channel models to make them more comprehensible and reusable. The toolbox allows users to run various experimental protocols and record data from multiple dendritic and somatic locations, thereby enhancing model validation. Finally, it aims to deepen our understanding of which dendritic properties are essential for neuronal input-output transformation. Using this knowledge, one can simplify models through a built-in morphology reduction algorithm and export them for further use in faster, more interpretable networks. With DendroTweaks, users can gain better control and understanding of their models, advancing research on dendritic input-output transformations and their role in network computations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。