Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to the improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low-energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge-based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov & Dunbrack, 2011).
Scientific benchmarks for guiding macromolecular energy function improvement.
阅读:4
作者:Leaver-Fay Andrew, O'Meara Matthew J, Tyka Mike, Jacak Ron, Song Yifan, Kellogg Elizabeth H, Thompson James, Davis Ian W, Pache Roland A, Lyskov Sergey, Gray Jeffrey J, Kortemme Tanja, Richardson Jane S, Havranek James J, Snoeyink Jack, Baker David, Kuhlman Brian
| 期刊: | Methods in Enzymology | 影响因子: | 0.000 |
| 时间: | 2013 | 起止号: | 2013;523:109-43 |
| doi: | 10.1016/B978-0-12-394292-0.00006-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
