Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7 cell line.

阅读:4
作者:Xia Tian, Jin Xue, Zhang Donghui, Wang Jitong, Jian Ruijun, Yin Hang, Xia Yu
In-depth structural characterization of lipids provides a new means to investigate lipid metabolism. In this study, we have conducted deep profiling of total fatty acids (FAs) from RAW 264.7 macrophages by utilizing charge-tagging Paternò-Büchi derivatization of carbon-carbon double bond (C=C) and reversed-phase liquid chromatography-tandem mass spectrometry. A series of FAs exhibiting unusual site(s) of unsaturation was unearthed, with their identities being confirmed by observing anticipated compositional alterations upon desaturase inhibition. The data reveal that FADS2 Δ 6-desaturation can generate n-11 C=C in the odd-chain monounsaturated fatty acids (MUFAs) as well as n-10 and n-12 families of even-chain MUFAs. SCD1 Δ 9-desaturation yields n-6, n-8, and n-10 of odd-chain MUFAs, as well as n-5, n-7, and n-9 families of even-chain MUFAs. Besides n-3 and n-6 families of polyunsaturated fatty acids (PUFAs), the presence of n-7 and n-9 families of PUFAs indicates that the n-7 and n-9 isomers of FA 18:1 can be utilized as substrates for further desaturation and elongation. The n-7 and n-9 families of PUFAs identified in RAW 264.7 macrophages are noteworthy because their C=C modifications are achieved exclusively via de novo lipogenesis. Our discovery outlines the metabolic plasticity in fatty acid desaturation which constitutes an unexplored rewiring in RAW264.7 macrophages.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。