Control of a Micro-Electro-Mechanical System Fast Steering Mirror with an Input Shaping Algorithm.

阅读:4
作者:Hou Jiapeng, Li Haoxiang, Qian Lei, Yu Huijun, Shen Wenjiang
Fast steering mirrors (FSMs) designed by the micro-electro-mechanical system (MEMS) technology are significantly smaller in volume and mass, offering distinct advantages. To improve their performance in the open-loop control mode, this study introduces a control algorithm and evaluates its performance on an electromagnetic-driven MEMS-FSM. The algorithm employs a method to shape the input signal by fitting the system's transfer function and modifying the step response. This shaped signal is then applied to the system to minimize overshoot, reduce settling time, and improve working bandwidth, thereby enabling faster angular adjustments and improving the stability of the FSM. The experimental results demonstrate an 85.65% reduction in overshoot and a decrease in settling time from 84 ms to 0.4 ms. Consequently, the working bandwidth of the FSM system increases to 2500 Hz, demonstrating the effectiveness of the algorithm in enhancing MEMS-FSM's performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。