Exploiting heart rate variability for driver drowsiness detection using wearable sensors and machine learning.

阅读:4
作者:AlArnaout Zakwan, Zaki Chamseddine, Kotb Yehia, AlAkkoumi Mouhammad, Mostafa Nour
Driver drowsiness is a critical issue in transportation systems and a leading cause of traffic accidents. Common factors contributing to accidents include intoxicated driving, fatigue, and sleep deprivation. Drowsiness significantly impairs a driver's response time, awareness, and judgment. Implementing systems capable of detecting and alerting drivers to drowsiness is therefore essential for accident prevention. This paper examines the feasibility of using heart rate variability (HRV) analysis to assess driver drowsiness. It explores the physiological basis of HRV and its correlation with drowsiness. We propose a system model that integrates wearable devices equipped with photoplethysmography (PPG) sensors, transmitting data to a smartphone and then to a cloud server. Two novel algorithms are developed to segment and label features periodically, predicting drowsiness levels based on HRV derived from PPG signals. The proposed approach is evaluated using real-driving data and supervised machine learning techniques. Six classification algorithms are applied to labeled datasets, with performance metrics such as accuracy, precision, recall, F1-score, and runtime assessed to determine the most effective algorithm for timely drowsiness detection and driver alerting. Our results demonstrate that the Random Forest (RF) classifier achieves the highest testing accuracy (86.05%), precision (87.16%), recall (93.61%), and F1-score (89.02%) with the smallest mean change between training and testing datasets (-4.30%), highlighting its robustness for real-world deployment. The Support Vector Machine with Radial Basis Function (SVM-RBF) also shows strong generalization performance, with a testing F1-score of 87.15% and the smallest mean change of -3.97%. These findings suggest that HRV-based drowsiness detection systems can be effectively integrated into Advanced Driver Assistance Systems (ADAS) to enhance driver safety by providing timely alerts, thereby reducing the risk of accidents caused by drowsiness.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。