Essential metals such as iron, copper, and zinc are required for a wide variety of biological processes. For example, they act as cofactors in many proteins, conferring enzymatic activity or structural stability. Interactions between metals and proteins are often difficult to characterize due to the low concentration of metals in biological tissues and the sometimes labile nature of the chemical bonds involved. To better understand the cellular functions of essential metals, we correlate protein localization, using fluorescence light microscopy (FLM), and metal distribution with synchrotron X-ray fluorescence (SXRF), a high-sensitivity and high-spatial-resolution technique for metal imaging. Both chemical imaging modalities are implemented under cryogenic conditions to preserve native cell structure and chemical element distribution. As a proof of concept, we applied cryo-FLM and cryo-SXRF correlative imaging to cultured primary hippocampal neurons. Neurons were labeled under live conditions with fluorescent F-actin and tubulin dyes, then samples were flash-frozen and observed in a frozen hydrated state. This methodology, cryo-FLM combined to cryo-SXRF, revealed the distribution of iron, copper and zinc relative to F-actin and tubulin in the growth cones, dendrites, axons, and axonal en passant boutons of developing neurons.
Native Cryo-Correlative Light and Synchrotron X-ray Fluorescence Imaging of Proteins and Essential Metals in Subcellular Neuronal Compartments.
阅读:11
作者:Ortega Richard, Fernández-Monreal Mónica, Pied Noémie, Roudeau Stéphane, Cloetens Peter, Carmona Asuncion
| 期刊: | Chemical & Biomedical Imaging | 影响因子: | 5.700 |
| 时间: | 2024 | 起止号: | 2024 Jul 23; 2(11):744-754 |
| doi: | 10.1021/cbmi.4c00038 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
