This article describes the implementation of an efficient and fast in-house computed tomography (CT) reconstruction framework. The implementation principles of this cone-beam CT reconstruction tool chain are described here. The article mainly covers the core part of CT reconstruction, the filtered backprojection and its speed up on GPU hardware. Methods and implementations of tools for artifact reduction such as ring artifacts, beam hardening, algorithms for the center of rotation determination and tilted rotation axis correction are presented. The framework allows the reconstruction of CT images of arbitrary data size. Strategies on data splitting and GPU kernel optimization techniques applied for the backprojection process are illustrated by a few examples.
Principles for an Implementation of a Complete CT Reconstruction Tool Chain for Arbitrary Sized Data Sets and Its GPU Optimization.
阅读:5
作者:Hofmann Jürgen, Flisch Alexander, Zboray Robert
| 期刊: | Journal of Imaging | 影响因子: | 3.300 |
| 时间: | 2022 | 起止号: | 2022 Jan 15; 8(1):12 |
| doi: | 10.3390/jimaging8010012 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
