BACKGROUND: With the advent of low cost, fast sequencing technologies metagenomic analyses are made possible. The large data volumes gathered by these techniques and the unpredictable diversity captured in them are still, however, a challenge for computational biology. RESULTS: In this paper we address the problem of rapid taxonomic assignment with small and adaptive data models (< 5 MB) and present the accelerated k-mer explorer (AKE). Acceleration in AKE's taxonomic assignments is achieved by a special machine learning architecture, which is well suited to model data collections that are intrinsically hierarchical. We report classification accuracy reasonably well for ranks down to order, observed on a study on real world data (Acid Mine Drainage, Cow Rumen). CONCLUSION: We show that the execution time of this approach is orders of magnitude shorter than competitive approaches and that accuracy is comparable. The tool is presented to the public as a web application (url: https://ani.cebitec.uni-bielefeld.de/ake/ , username: bmc, password: bmcbioinfo).
AKE - the Accelerated k-mer Exploration web-tool for rapid taxonomic classification and visualization.
阅读:4
作者:Langenkämper Daniel, Goesmann Alexander, Nattkemper Tim Wilhelm
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2014 | 起止号: | 2014 Dec 13; 15(1):384 |
| doi: | 10.1186/s12859-014-0384-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
