Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).

阅读:4
作者:Xia Qing, Thompson Jeffrey A, Koestler Devin C
Batch-effects present challenges in the analysis of high-throughput molecular data and are particularly problematic in longitudinal studies when interest lies in identifying genes/features whose expression changes over time, but time is confounded with batch. While many methods to correct for batch-effects exist, most assume independence across samples; an assumption that is unlikely to hold in longitudinal microarray studies. We propose Batch effect Reduction of mIcroarray data with Dependent samples usinGEmpirical Bayes (BRIDGE), a three-step parametric empirical Bayes approach that leverages technical replicate samples profiled at multiple timepoints/batches, so-called "bridge samples", to inform batch-effect reduction/attenuation in longitudinal microarray studies. Extensive simulation studies and an analysis of a real biological data set were conducted to benchmark the performance of BRIDGE against both ComBat and longitudinalComBat. Our results demonstrate that while all methods perform well in facilitating accurate estimates of time effects, BRIDGE outperforms both ComBat and longitudinal ComBat in the removal of batch-effects in data sets with bridging samples, and perhaps as a result, was observed to have improved statistical power for detecting genes with a time effect. BRIDGE demonstrated competitive performance in batch effect reduction of confounded longitudinal microarray studies, both in simulated and a real data sets, and may serve as a useful preprocessing method for researchers conducting longitudinal microarray studies that include bridging samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。