Mechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for a given vessel may be determined from medical images at different physiological pressures using inverse finite element analysis. However, without considering pre-stresses, the estimation of mechanical properties will lack accuracy. In the present paper, we propose and evaluate a mechanical parameter identification technique, which recovers pre-stresses by determining the zero-pressure configuration of the aortic geometry. We first validated the method on a cylindrical geometry and subsequently applied it to a realistic aortic geometry. The verification of the assessed parameters was performed using synthetically generated reference data for both geometries. The method was able to estimate the true mechanical properties with an accuracy ranging from 98% to 99%.
Biomechanical Characterisation of Thoracic Ascending Aorta with Preserved Pre-Stresses.
阅读:5
作者:Parikh Shaiv, Moerman Kevin M, Ramaekers Mitch J F G, Schalla Simon, Bidar Elham, Delhaas Tammo, Reesink Koen, Huberts Wouter
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Jul 17; 10(7):846 |
| doi: | 10.3390/bioengineering10070846 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
