The molecular design of semiconducting polymers (SCPs) has been largely guided by varying monomer combinations and sequences by leveraging a robust understanding of charge transport mechanisms. However, the connection between controllable structural features and resulting electronic disorder remains elusive, leaving design rules for next-generation SCPs undefined. Using high-throughput computational methods, we analyse 100+ state-of-the-art p- and n-type polymer models. This exhaustive dataset allows for deriving statistically significant design rules. Our analysis disentangles the impact of key structural features, examining existing hypotheses, and identifying new structure-property relationships. For instance, we show that polymer rigidity has minimal impact on charge transport, while the planarity persistence length, introduced here, is a superior structural characteristic. Additionally, the predictive power of machine learning models trained on our dataset highlights the potential of data-driven approaches to SCP design, laying the groundwork for accelerated discovery of materials with tailored electronic properties.
Mapping the structure-function landscape of semiconducting polymers.
阅读:11
作者:Makki Hesam, Burke Colm, Nielsen Christian B, Troisi Alessandro
| 期刊: | Materials Horizons | 影响因子: | 10.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 28; 12(15):5723-5732 |
| doi: | 10.1039/d5mh00485c | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
