Natural products are the most important and commonly used in Traditional Chinese Medicine (TCM) for healthcare and disease prevention in East-Asia. Although the Meridian system of TCM was established several thousand years ago, the rationale of Meridian classification based on the ingredient compounds remains poorly understood. A core challenge for the traditional machine learning approaches for chemical activity prediction is to encode molecules into fixed length vectors but ignore the structural information of the chemical compound. Therefore, we apply a cost-sensitive graph convolutional neural network model to learn local and global topological features of chemical compounds, and discover the associations between TCM and their Meridians. In the experiments, we find that the performance of our approach with the area under the receiver operating characteristic curve (ROC-AUC) of 0.82 which is better than the traditional machine learning algorithm and also obtains 8%-13% improvement comparing with the state-of-the-art methods. We investigate the powerful ability of deep learning approach to learn the proper molecular descriptors for Meridian prediction and to provide novel insights into the complementary and alternative medicine of TCM.
Predicting the Associations between Meridians and Chinese Traditional Medicine Using a Cost-Sensitive Graph Convolutional Neural Network.
阅读:6
作者:Yeh Hsiang-Yuan, Chao Chia-Ter, Lai Yi-Pei, Chen Huei-Wen
| 期刊: | International Journal of Environmental Research and Public Health | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Jan 23; 17(3):740 |
| doi: | 10.3390/ijerph17030740 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
