Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4âÃâ10(-12). By contrast, -log(10)P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.
Privacy-preserving multicenter differential protein abundance analysis with FedProt.
阅读:12
作者:Burankova Yuliya, Abele Miriam, Bakhtiari Mohammad, von Toerne Christine, Barth Teresa K, Schweizer Lisa, Giesbertz Pieter, Schmidt Johannes R, Kalkhof Stefan, Müller-Deile Janina, van Veelen Peter A, Mohammed Yassene, Hammer Elke, Arend Lis, Adamowicz Klaudia, Laske Tanja, Hartebrodt Anne, Frisch Tobias, Meng Chen, Matschinske Julian, Späth Julian, Röttger Richard, Schwämmle Veit, Hauck Stefanie M, Lichtenthaler Stefan F, Imhof Axel, Mann Matthias, Ludwig Christina, Kuster Bernhard, Baumbach Jan, Zolotareva Olga
| 期刊: | Nature Computational Science | 影响因子: | 18.300 |
| 时间: | 2025 | 起止号: | 2025 Aug;5(8):675-688 |
| doi: | 10.1038/s43588-025-00832-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
