Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4âÃâ10(-12). By contrast, -log(10)P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.
Privacy-preserving multicenter differential protein abundance analysis with FedProt.
阅读:5
作者:Burankova Yuliya, Abele Miriam, Bakhtiari Mohammad, von Toerne Christine, Barth Teresa K, Schweizer Lisa, Giesbertz Pieter, Schmidt Johannes R, Kalkhof Stefan, Müller-Deile Janina, van Veelen Peter A, Mohammed Yassene, Hammer Elke, Arend Lis, Adamowicz Klaudia, Laske Tanja, Hartebrodt Anne, Frisch Tobias, Meng Chen, Matschinske Julian, Späth Julian, Röttger Richard, Schwämmle Veit, Hauck Stefanie M, Lichtenthaler Stefan F, Imhof Axel, Mann Matthias, Ludwig Christina, Kuster Bernhard, Baumbach Jan, Zolotareva Olga
| 期刊: | Nature Computational Science | 影响因子: | 18.300 |
| 时间: | 2025 | 起止号: | 2025 Aug;5(8):675-688 |
| doi: | 10.1038/s43588-025-00832-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
