Synergistic drug combination screening is a promising strategy in drug discovery, but it involves navigating a costly and complex search space. While AI, particularly deep learning, has advanced synergy predictions, its effectiveness is limited by the low occurrence of synergistic drug pairs. Active learning, which integrates experimental testing into the learning process, has been proposed to address this challenge. In this work, we explore the key components of active learning to provide recommendations for its implementation. We find that molecular encoding has a limited impact on performance, while the cellular environment features significantly enhance predictions. Additionally, active learning can discover 60% of synergistic drug pairs with only exploring 10% of combinatorial space. The synergy yield ratio is observed to be even higher with smaller batch sizes, where dynamic tuning of the exploration-exploitation strategy can further enhance performance. The code can be found at https://github.com/LBiophyEvo/DrugSynergy.
A guide for active learning in synergistic drug discovery.
阅读:3
作者:Wang Shuhui, Allauzen Alexandre, Nghe Philippe, Opuu Vaitea
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 28; 15(1):3484 |
| doi: | 10.1038/s41598-025-85600-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
