Traditional nanomaterial development faces inefficiency and unstable results due to labor-intensive trial-and-error methods. To overcome these challenges, we developed a data-driven automated platform integrating artificial intelligence (AI) decision modules with automated experiments. Specifically, the platform employs a Generative Pre-trained Transformer (GPT) model to retrieve methods/parameters and implements an A* algorithm centered closed-loop optimization process. It achieves optimized diverse nanomaterials (Au, Ag, Cu(2)O, PdCu) with controlled types, morphologies, and sizes, demonstrating efficiency and repeatability. Using the A* algorithm, we comprehensively optimized synthesis parameters for multi-target Au nanorods (Au NRs) with longitudinal surface plasmon resonance (LSPR) peak under 600-900ânm across 735 experiments, and for Au nanospheres (Au NSs)/Ag nanocubes (Ag NCs) in 50 experiments. Reproducibility tests showed deviations in characteristic LSPR peak and full width at half maxima (FWHM) of Au NRs under identical parameters were â¤1.1ânm and ⤠2.9ânm, respectively. Researchers only need initial script editing and parameter input, significantly reducing human resource requirements. Comparative analysis confirms the A* algorithm outperforms Optuna and Olympus in search efficiency, requiring significantly fewer iterations.
A chemical autonomous robotic platform for end-to-end synthesis of nanoparticles.
阅读:12
作者:Gao Fan, Li Hongqiang, Chen Zhilong, Yi Yunai, Nie Shihao, Cheng Zihao, Liu Zeming, Guo Yuanfang, Liu Shumin, Qin Qizhen, Li Zhengjian, Zhang Lisong, Hu Han, Li Cunjin, Yang Liang, Wang Yunhong, Chen Guangxu
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 14; 16(1):7558 |
| doi: | 10.1038/s41467-025-62994-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
