A chemical autonomous robotic platform for end-to-end synthesis of nanoparticles.

阅读:5
作者:Gao Fan, Li Hongqiang, Chen Zhilong, Yi Yunai, Nie Shihao, Cheng Zihao, Liu Zeming, Guo Yuanfang, Liu Shumin, Qin Qizhen, Li Zhengjian, Zhang Lisong, Hu Han, Li Cunjin, Yang Liang, Wang Yunhong, Chen Guangxu
Traditional nanomaterial development faces inefficiency and unstable results due to labor-intensive trial-and-error methods. To overcome these challenges, we developed a data-driven automated platform integrating artificial intelligence (AI) decision modules with automated experiments. Specifically, the platform employs a Generative Pre-trained Transformer (GPT) model to retrieve methods/parameters and implements an A* algorithm centered closed-loop optimization process. It achieves optimized diverse nanomaterials (Au, Ag, Cu(2)O, PdCu) with controlled types, morphologies, and sizes, demonstrating efficiency and repeatability. Using the A* algorithm, we comprehensively optimized synthesis parameters for multi-target Au nanorods (Au NRs) with longitudinal surface plasmon resonance (LSPR) peak under 600-900 nm across 735 experiments, and for Au nanospheres (Au NSs)/Ag nanocubes (Ag NCs) in 50 experiments. Reproducibility tests showed deviations in characteristic LSPR peak and full width at half maxima (FWHM) of Au NRs under identical parameters were ≤1.1 nm and ≤ 2.9 nm, respectively. Researchers only need initial script editing and parameter input, significantly reducing human resource requirements. Comparative analysis confirms the A* algorithm outperforms Optuna and Olympus in search efficiency, requiring significantly fewer iterations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。