Fiber enhancement and 3D orientation analysis in label-free two-photon fluorescence microscopy.

阅读:5
作者:Sorelli Michele, Costantini Irene, Bocchi Leonardo, Axer Markus, Pavone Francesco Saverio, Mazzamuto Giacomo
Fluorescence microscopy can be exploited for evaluating the brain's fiber architecture with unsurpassed spatial resolution in combination with different tissue preparation and staining protocols. Differently from state-of-the-art polarimetry-based neuroimaging modalities, the quantification of fiber tract orientations from fluorescence microscopy volume images entails the application of specific image processing techniques, such as Fourier or structure tensor analysis. These, however, may lead to unreliable outcomes as they do not isolate myelinated fibers from the surrounding tissue. In this work, we describe a novel image processing pipeline that enables the computation of accurate 3D fiber orientation maps from both grey and white matter regions, exploiting the selective multiscale enhancement of tubular structures of varying diameters provided by a 3D implementation of the Frangi filter. The developed software tool can efficiently generate orientation distribution function maps at arbitrary spatial scales which may support the histological validation of modern diffusion-weighted magnetic resonance imaging tractography. Despite being tested here on two-photon scanning fluorescence microscopy images, acquired from tissue samples treated with a label-free technique enhancing the autofluorescence of myelinated fibers, the presented pipeline was developed to be employed on all types of 3D fluorescence images and fiber staining.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。