Designing compounds with a range of desirable properties is a fundamental challenge in drug discovery. In pre-clinical early drug discovery, novel compounds are often designed based on an already existing promising starting compound through structural modifications for further property optimization. Recently, transformer-based deep learning models have been explored for the task of molecular optimization by training on pairs of similar molecules. This provides a starting point for generating similar molecules to a given input molecule, but has limited flexibility regarding user-defined property profiles. Here, we evaluate the effect of reinforcement learning on transformer-based molecular generative models. The generative model can be considered as a pre-trained model with knowledge of the chemical space close to an input compound, while reinforcement learning can be viewed as a tuning phase, steering the model towards chemical space with user-specific desirable properties. The evaluation of two distinct tasks-molecular optimization and scaffold discovery-suggest that reinforcement learning could guide the transformer-based generative model towards the generation of more compounds of interest. Additionally, the impact of pre-trained models, learning steps and learning rates are investigated.Scientific contributionOur study investigates the effect of reinforcement learning on a transformer-based generative model initially trained for generating molecules similar to starting molecules. The reinforcement learning framework is applied to facilitate multiparameter optimisation of starting molecules. This approach allows for more flexibility for optimizing user-specific property profiles and helps finding more ideas of interest.
Evaluation of reinforcement learning in transformer-based molecular design.
阅读:3
作者:He Jiazhen, Tibo Alessandro, Janet Jon Paul, Nittinger Eva, Tyrchan Christian, Czechtizky Werngard, Engkvist Ola
| 期刊: | Journal of Cheminformatics | 影响因子: | 5.700 |
| 时间: | 2024 | 起止号: | 2024 Aug 8; 16(1):95 |
| doi: | 10.1186/s13321-024-00887-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
