Unprecedented Microbial Conversion of Biliverdin into Bilirubin-10-sulfonate

胆绿素以前所未有的微生物方式转化为胆红素-10-磺酸盐

阅读:5
作者:Ryan G Shiels, Josif Vidimce, Andrew G Pearson, Ben Matthews, Karl-Heinz Wagner, Andrew R Battle, Harry Sakellaris, Andrew C Bulmer

Abstract

Biliverdin (BV) possesses antioxidant and anti-inflammatory properties, with previous reports identifying protection against oxidant and inflammatory injury in animal models. Recent reports indicate that intra-duodenal administration of BV results in the formation of an uncharacterised metabolite, which is potently absorbed into the blood and excreted into the bile. This compound may be responsible for protection against inflammatory responses. This study aimed to identify novel, enterally-derived BV metabolites and determine the source of their metabolic transformation. Rat duodena and bacterial cultures of Citrobacter youngae were treated with BV and subsequently analysed via high performance liquid chromatography/high resolution tandem mass spectrometry to identify and characterise metabolites of BV. A highly abundant metabolite was detected in duodenal wash and bacterial culture supernatants with a 663.215 m/z (3 ppm mass accuracy) and a composition of C33N4O9H36S, which conformed to the predicted structure of bilirubin-10-sulfonate (BRS) and possessed a λmax of 440 nm. Bilirubin-10-sulfonate was then synthesized for comparative LCMS/MS analysis and matched with that of the biologically formed BV metabolite. This report confirms the formation of a previously undocumented metabolite of BV in mammals, indicating that a new metabolic pathway likely exists for BV metabolism requiring enteric bacteria, Citrobacter youngae. These data may have important implications with regard to understanding and harnessing the therapeutic efficacy of oral BV administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。