A crack detection and quantification method using matched filter and photograph reconstruction.

阅读:3
作者:Zhen-Liang Liu, An Zhou, Xin-Ru Ran, Yun-Peng Wu, Wei-Gang Zhao, Hao Zhang
Crack detection is a critical task for bridge maintenance and management. While popular deep learning algorithms have shown promise, their reliance on large, high-quality training datasets, which are often unavailable in engineering practice, limits their applicability. By contrast, traditional digital image processing methods offer low computational costs and strong interpretability, making continued research in this area highly valuable. This study proposes an automatic crack detection and quantification approach based on digital image processing combined with unmanned aerial vehicle (UAV) flight parameters. First, the characteristics of the bridge images collected by the UAVs were thoroughly analyzed. An enhanced matched-filter algorithm was designed to achieve crack segmentation. Morphological methods were employed to extract the skeletons of the segmented cracks, enabling the calculation of actual crack lengths. Finally, a 3D model was constructed by integrating the detection results with the image-shooting parameters. This 3D model, annotated with detected cracks, provides an intuitive and comprehensive representation of bridge damage, facilitating informed decision making in maintenance planning and resource allocation. To verify the accuracy of the enhanced matched filter algorithm, it was compared with other digital image processing methods on public datasets, achieving average results of 97.9% for Pixel Accuracy (PA), 72.5% for the F1-score, and 58.1% for Intersection over Union (Iou) across three typical sub-datasets. Moreover, the proposed methodologies were successfully applied to an arch bridge with an error of only 2%, thereby demonstrating their applicability to real-world scenarios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。