Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluorescent single molecules.

阅读:5
作者:Jouchet Pierre, Roy Anish R, Moerner W E
Point Spread Function (PSF) engineering is an effective method to increase the sensitivity of single-molecule fluorescence images to specific parameters. Classical phase mask optimization approaches have enabled the creation of new PSFs that can achieve, for example, localization precision of a few nanometers axially over a capture range of several microns with bright emitters. However, for complex high-dimensional optimization problems, classical approaches are difficult to implement and can be very time-consuming for computation. The advent of deep learning methods and their application to single-molecule imaging has provided a way to solve these problems. Here, we propose to combine PSF engineering and deep learning approaches to obtain both an optimized phase mask and a neural network structure to obtain the 3D position and 3D orientation of fixed fluorescent molecules. Our approach allows us to obtain an axial localization precision around 30 nanometers, as well as an orientation precision around 5 degrees for orientations and positions over a one micron depth range for a signal-to-noise ratio consistent with what is typical in single-molecule cellular imaging experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。