Biophotonic technologies such as Raman spectroscopy are powerful tools for obtaining highly specific molecular information. Due to its minimal sample preparation requirements, Raman spectroscopy is widely used across diverse scientific disciplines, often in combination with chemometrics, machine learning (ML), and deep learning (DL). However, Raman spectroscopy lacks large databases of independent Raman spectra for model training, leading to overfitting, overestimation, and limited model generalizability. We address this problem by generating simulated vibrational spectra using semiempirical quantum chemistry methods, enabling the efficient pretraining of deep learning models on large synthetic data sets. These pretrained models are then fine-tuned on a smaller experimental Raman data set of bacterial spectra. Transfer learning significantly reduces the computational cost while maintaining performance comparable to models trained from scratch in this real biophotonic application. The results validate the utility of synthetic data for pretraining deep Raman models and offer a scalable framework for spectral analysis in resource-limited settings.
Transfer-Learning Deep Raman Models Using Semiempirical Quantum Chemistry.
阅读:16
作者:Kamran Jawad, Hniopek Julian, Bocklitz Thomas
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 14; 65(13):6632-6643 |
| doi: | 10.1021/acs.jcim.5c00513 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
