This paper presents a human-in-the-loop interactive framework for skeleton-based posture recognition, designed to support model training and artistic education. A total of 4870 labeled images are used for training and validation, and 500 images are reserved for testing across five core posture categories: standing, sitting, jumping, crouching, and lying. From each image, comprehensive skeletal features are extracted, including joint coordinates, angles, limb lengths, and symmetry metrics. Multiple classification algorithms-traditional (KNN, SVM, Random Forest) and deep learning-based (LSTM, Transformer)-are compared to identify effective combinations of features and models. Experimental results show that deep learning models achieve superior accuracy on complex postures, while traditional models remain competitive with low-dimensional features. Beyond classification, the system integrates posture recognition with a visual recommendation module. Recognized poses are used to retrieve matched examples from a reference library, allowing instructors to browse and select posture suggestions for learners. This semi-automated feedback loop enhances teaching interactivity and efficiency. Among all evaluated methods, the Transformer model achieved the best accuracy of 92.7% on the dataset, demonstrating the effectiveness of our closed-loop framework in supporting pose classification and model training. The proposed framework contributes both algorithmic insights and a novel application design for posture-driven educational support systems.
An Interactive Human-in-the-Loop Framework for Skeleton-Based Posture Recognition in Model Education.
阅读:4
作者:Shen Jing, Chen Ling, He Xiaotong, Zuo Chuanlin, Li Xiangjun, Dong Lin
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 10(7):431 |
| doi: | 10.3390/biomimetics10070431 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
