Promising results have been reported in noninvasive estimation of cardiac activation times (AT) using the equivalent dipole layer (EDL) source model in combination with the boundary element method (BEM). However, the assumption of equal anisotropy ratios in the heart that underlies the EDL model does not reflect reality. In the present study, we quantify the errors of the nonlinear AT imaging based on the EDL approximation. Nine different excitation patterns (sinus rhythm and eight ectopic beats) were simulated with the monodomain model. Based on the bidomain theory, the body surface potential maps (BSPMs) were calculated for a realistic finite element volume conductor with an anisotropic heart model. For the forward calculations, three cases of bidomain conductivity tensors in the heart were considered: isotropic, equal, and unequal anisotropy ratios in the intra- and extracellular spaces. In all inverse reconstructions, the EDL model with BEM was employed: AT were estimated by solving the nonlinear optimization problem with the initial guess provided by the fastest route algorithm. Expectedly, the case of unequal anisotropy ratios resulted in larger localization errors for almost all considered activation patterns. For the sinus rhythm, all sites of early activation were correctly estimated with an optimal regularization parameter being used. For the ectopic beats, all but one foci were correctly classified to have either endo- or epicardial origin with an average localization error of 20.4 mm for unequal anisotropy ratio. The obtained results confirm validation studies and suggest that cardiac anisotropy might be neglected in clinical applications of the considered EDL-based inverse procedure.
Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart.
阅读:5
作者:Janssen Arno M, Potyagaylo Danila, Dössel Olaf, Oostendorp Thom F
| 期刊: | Medical & Biological Engineering & Computing | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Jun;56(6):1013-1025 |
| doi: | 10.1007/s11517-017-1715-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
