In this paper we propose PIICM, a probabilistic framework for dose-response prediction in high-throughput drug combination datasets. PIICM utilizes a permutation invariant version of the intrinsic co-regionalization model for multi-output Gaussian process regression, to predict dose-response surfaces in untested drug combination experiments. Coupled with an observation model that incorporates experimental uncertainty, PIICM is able to learn from noisily observed cell-viability measurements in settings where the underlying dose-response experiments are of varying quality, utilize different experimental designs, and the resulting training dataset is sparsely observed. We show that the model can accurately predict dose-response in held out experiments, and the resulting function captures relevant features indicating synergistic interaction between drugs.
Dose-response prediction for in-vitro drug combination datasets: a probabilistic approach.
阅读:8
作者:Rønneberg Leiv, Kirk Paul D W, Zucknick Manuela
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2023 | 起止号: | 2023 Apr 21; 24(1):161 |
| doi: | 10.1186/s12859-023-05256-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
