Dose-response prediction for in-vitro drug combination datasets: a probabilistic approach.

阅读:3
作者:Rønneberg Leiv, Kirk Paul D W, Zucknick Manuela
In this paper we propose PIICM, a probabilistic framework for dose-response prediction in high-throughput drug combination datasets. PIICM utilizes a permutation invariant version of the intrinsic co-regionalization model for multi-output Gaussian process regression, to predict dose-response surfaces in untested drug combination experiments. Coupled with an observation model that incorporates experimental uncertainty, PIICM is able to learn from noisily observed cell-viability measurements in settings where the underlying dose-response experiments are of varying quality, utilize different experimental designs, and the resulting training dataset is sparsely observed. We show that the model can accurately predict dose-response in held out experiments, and the resulting function captures relevant features indicating synergistic interaction between drugs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。